Artwork

Inhoud geleverd door Kai Kunze. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Kai Kunze of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.
Player FM - Podcast-app
Ga offline met de app Player FM !

ISMAR 2024 Do you read me? (E)motion Legibility of Virtual Reality Character Representations

10:35
 
Delen
 

Manage episode 465362228 series 3605621
Inhoud geleverd door Kai Kunze. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Kai Kunze of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

K. Brandstätter, B. J. Congdon and A. Steed, "Do you read me? (E)motion Legibility of Virtual Reality Character Representations," 2024 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bellevue, WA, USA, 2024, pp. 299-308, doi: 10.1109/ISMAR62088.2024.00044.

We compared the body movements of five virtual reality (VR) avatar representations in a user study (N=53) to ascertain how well these representations could convey body motions associated with different emotions: one head-and-hands representation using only tracking data, one upper-body representation using inverse kinematics (IK), and three full-body representations using IK, motioncapture, and the state-of-the-art deep-learning model AGRoL. Participants’ emotion detection accuracies were similar for the IK and AGRoL representations, highest for the full-body motion-capture representation and lowest for the head-and-hands representation. Our findings suggest that from the perspective of emotion expressivity, connected upper-body parts that provide visual continuity improve clarity, and that current techniques for algorithmically animating the lower-body are ineffective. In particular, the deep-learning technique studied did not produce more expressive results, suggesting the need for training data specifically made for social VR applications.

https://ieeexplore.ieee.org/document/10765392

  continue reading

41 afleveringen

Artwork
iconDelen
 
Manage episode 465362228 series 3605621
Inhoud geleverd door Kai Kunze. Alle podcastinhoud, inclusief afleveringen, afbeeldingen en podcastbeschrijvingen, wordt rechtstreeks geüpload en geleverd door Kai Kunze of hun podcastplatformpartner. Als u denkt dat iemand uw auteursrechtelijk beschermde werk zonder uw toestemming gebruikt, kunt u het hier beschreven proces https://nl.player.fm/legal volgen.

K. Brandstätter, B. J. Congdon and A. Steed, "Do you read me? (E)motion Legibility of Virtual Reality Character Representations," 2024 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bellevue, WA, USA, 2024, pp. 299-308, doi: 10.1109/ISMAR62088.2024.00044.

We compared the body movements of five virtual reality (VR) avatar representations in a user study (N=53) to ascertain how well these representations could convey body motions associated with different emotions: one head-and-hands representation using only tracking data, one upper-body representation using inverse kinematics (IK), and three full-body representations using IK, motioncapture, and the state-of-the-art deep-learning model AGRoL. Participants’ emotion detection accuracies were similar for the IK and AGRoL representations, highest for the full-body motion-capture representation and lowest for the head-and-hands representation. Our findings suggest that from the perspective of emotion expressivity, connected upper-body parts that provide visual continuity improve clarity, and that current techniques for algorithmically animating the lower-body are ineffective. In particular, the deep-learning technique studied did not produce more expressive results, suggesting the need for training data specifically made for social VR applications.

https://ieeexplore.ieee.org/document/10765392

  continue reading

41 afleveringen

Wszystkie odcinki

×
 
Loading …

Welkom op Player FM!

Player FM scant het web op podcasts van hoge kwaliteit waarvan u nu kunt genieten. Het is de beste podcast-app en werkt op Android, iPhone en internet. Aanmelden om abonnementen op verschillende apparaten te synchroniseren.

 

Korte handleiding

Luister naar deze show terwijl je op verkenning gaat
Spelen

OSZAR »